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SUMMARY

This is the first of a series of papers devoted to the
computational solution of dynamic programming processes. In
it we use the functional—equation approach to treat a tactical
air—warfare model that A. Mengel previously has considered by

means of classicul variational techniques.
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ON THE COMPUTATIONAL SOLUTION OF
DYNAMIC—PROGRAMMING PROCESSES-I
ON A TACTICAL AIR-WARFARE MODEL OF MENGEL

1. INTRODUCTION

This is the first of a eseries of papers devoted to the
computational solution of dynamic-programming processes.
Although the papers are linked tugether by a common method
each of the diverse problems we shall treat possesses particu—
lar features of interest and difficulty that make a detalled
exposition of the coding worthwhile.

It 1s pilanned eventually to present all the papers of the
series in the form of a book.

We would like to express our appreciation to E. w. Paxemon
for a number of helpful comments and suggestions which we have

incorporated in the paper.

2. ATTRITION PROCESSES

The study of attrition processes ari~ing from military
campaigns leads to a class of varlational problems that are
particularly well suited to dynamic programming.

Consider the following model. Let the state of Blue's
forces at time t be specified by the vector x, with components
X oXos oo Xy, and the state of Ked's forces be specifled by y,
with components Yys¥ore s sVye At each stage of the process,
which may be discrete or continuous—and this has less to do
with reality than with the type of computing machine which is

available, a digital computer or an analog computer—each side

allocates a certalin portion of the forces to combat, obtaining
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in this way a cert.in payoff and suffering, in return, a certain
attrition. Let z be the allocation vector of Blue and w the

allocation vector of Red. The natural constraints are, in vector

form,

(1) 0z (x, O wWw(Yys

that 1is,

(2) 0<zy x4, 1=1,2,...,M,

0« w'J < yJ, LR R X

The single—stage payoff is determined as some function

(3) R(x,y,z,w)
(1n practice, usually the most difficult function to decide upon)
and we assume that we know the attrition due to combat, so that

(“) gi - F(x,y,z,w), X(O) bt ql
dt

d
g% = G(X,y,Z,W), Y(o) = QQ

where Q) and q, are the initial forces.

The mathematical problem 18 then that cf determining

i
(5) min  max U/"R(x,y,z,w)dt,
W z o

where T 18 the duration of the process, subject to the constraints
(2) and the relations (4).

Alternatively, we may wish to determine

(6) max min R(x,y,z,w)dt.
z w0
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Since, in general, the deterri‘nation of min max or max min

1 a formidable problem, particularly 1f min max ¢ max min, we

shall reduce the magnitude of the problem by fixing Red's strateyy,

say w = w*, and proceeding to determine
)
(7) max /' R(x,y,z,w*)dt,
z o

sub ject to
(8) (a) 0¢z < x,

d
(b) £ = F(x,y,z,w*), x(0) = qy
dt

%f L G(x,y,z,w'), 3(0) - q'g'

Problems of this type are difficult, using conventional
methods, because of the presence of the conatraints, and the

analytic structure of the functione F, G and R.

3. MENGEL'S MODEL

Let us now consider the attrition process that has been
discussed by Arnold Mengel, usiny class!ical variational tech-—
niques [5].

Considering only a!r forcee consisting of one type of rlane,

for the purpose of an exploratory model, we have the equations(l)

. —b?e?y/x
(1) X = Gl(x,y,s?) = 1)-a,x-x(1-e ),

) -b,8,x/y

y = Gy(x,y,8y) = ry—a,y-v(l-e SR

(1) r )T, are replacemert rates of new aircraft. The terms
a.x, 8,y represent operational (non-combat) attrition rates.
T?e tedm & y(-uz ie Red'e counter air effort over (t,t+dt), with
"kill potegtlal b 8,y. The crance any one of the x 2ircraft e
killed ty one of the =,y attacks 18 b,. The average numter of
attacxs rer Blue atrcrfft 1s n = e.y/%X. Hence tne vrotebilit, of
gurvival 1s (l-b ) n ¥ exp( b.n). ©
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for fixed 8,, with the payoff function(l)

2
(2) J(el) - céx [(l—el)x-(l-se)det.
Here
(3) x(t) = the number of Blue aircraft at time t,

y(t) = the number of Red Alrcraft at time t.

The allocatior variable: are

(4) sl(t) = fraction of Blue sorties on counter-air strikes,
ez(t) = fraction of Red sorties on counter—air strikes.
As mentioned above, we shall fix se(t), in thie case by
assum‘ng various constant levels, e;, ancd then maximizing J(sl)

over all sl(t) satisfying O < el(t) < 1.

4. DYNAMIC—PROGRAMMING APPROACH—I

Setting

(1) max J(Sl) e r(QIDQQ!T);
5|

we obtain, as in [1], the nonlinear partial differential equation

ar i . af or ]
(2) 2= = max - |(1-s))a;-(1-8;)a,40, (a),85:8,) 55~ + G,(a),9,,8) )55

aT 0ge <1 141 2/R2 1M1 2 T2 5q 2191792771739, |
with
(3) £(ay,q,,9) & 0.

This equation may be solved numerically using approximating

difference equations in the usual fashion. 1In practice, we en-

(1) This measures the total excess of Blue's combat
capability over Red's during the campaign on missione other
than counter—alir.
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countered a great deal of difficulty with this method due to
instability arising from transition curvese. Consequently, we
went over to the method we shall present in the next section.
This method has applications to the numerical integration of other
types of partial differential equations, a matter which we have

discussed elsewhere.

5. DYNAMIC—-PROGRAMMING AFPROACH—II

Let us consider the following discrete process. Divide the

interval [O,T] into N equal parts of leng:.h 4,

v v

a 24 KA NA = T

o7

Let us assume that decisions may be made only at times
kA, k = 0,1,2,...,N-1. As far as actual procee: g are concerned,
this may be a more realistic assumption than that of a cont!nuous
process.

In place of the equations (&) of Section 2, we have the

difference equations, or recurrence relations,

(1) Kol = Xy * G xve8p k) 0, *o = ¢
Y1 = Vi * G (xpvie ey (K)) 8, Yo = G
where
(2) x, = x(ka), y, = y(ka),
81y = el(kA).

The 3equence {Blk} 18 to be chosen to maximize
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N-1 )
J(sy) = kfo [(l—slk)xk—\l—BQk)yk] .

subject to the restriction 0 < 8,, < 1.

(%)

with

(5)

Let

max J(Sl) - fN(QIQQ2))

rl(q13q2) =q, - (1-82k)q2'

The basic recurrence relation used to compute the sequence

{tylaysap)f te

(6)

ry(a;,a,) = max [(l-e Ja; — (1-8,)q
N'91:92 1’9 2/92
0¢s,<1
.

Let us consider a procees of the same general type in which

attrition and payoff functions depend upon time. Thus

= Gl(x,y,ﬁe,t). X(O) - ql'

- C’Q(X’Y:Blvt)p Y(o) = q2'

In this case, we keep the terminal point T fixed and describe

for N - 1,2,...
6. TIME-DEPENDENT PROCES3ES
the
dx
(1) ==
dat
dy
dt
and we wish to choose 81 sO as to maximize
(2) J(8y) = fP(x.y.sl.t)dt.
o)
the

state of the process by means of the resourcee and the starting
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point.

The discrete maximization problem is then: Maximize

N
Z P(x,,y,18),.k) ,

()) JR(BI) - KeR

subject to the constraints

(4) Teel = Xt G Ky efa0k), xg e q),

Yol = Vi * Ga(xpe¥per8yy0k), v = ap:
Setting

(5) max Jp(s,) = fp(a,,a,),

we oLtaln the recurrence relations

(6) f (q,,9,) = max !P(q,,9,,8,,R)
RM1’72 055131 10V 5 2%

-t

+fp,1(a;4G,(ay,9,,8,,R),q,+G,(a;,a,,8,,R)) !,

-—

for R =0,1,2,...,N=1, with

(7) £f.(q:,9,) = max  P(q,,&.,8,,N).
TARSER P 0gx,<1 1828

7. DISCUSSION OF COMPUTATIONAL PROCEDURES

The recursive nature of the protlem makes it particularly
suited to digital computation. A falrly sizable problem can be
solved in 500 instructions, leaving the bulk of high-speed
storage avallable for tabulation of the functions. In this
initial study the luxury of [loating—point arithmetic was
allowed, due to uncertainty concerning the ranges of the vari-

ables. Considerable additional time and space could be saved in
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later studies by fixed-point programming.
The program i{tself can be divided into 3 logical sections.
A master routine does the bookkeeping, tallying, and sequencing;
a subroutine evaluates P(ql,q2,sl) + rR(q1+01,q2+62) for given
ql'q2’°1’82’ and a table of fR; a second subroutine performs the
maximization of the above expression over the interval 0 ¢ 8, £ 1.

The flow—chart governing the computation i{s shown in Pigure

In more detail, the computatio' proceeds as follows. Under
control of the master, the conatants Aql, Aq2, 65 N, and m+l
are 1lnput: Aq1 and Aq2 determine the density of the grid over

which the function f_ is to be evaluated; the parameter 8, is

R
Red's constant etrategy; N is the number of stages for which
the process is allowed to continue; and m+l determines the size
of the grid, ite dimensions being mAq1 by mAq2.

The quantity rl(ql,qe) is evaluated over the grid as

max [F(q »9-,8,) + ¢ (q,+G,,q,+G )]. Since the return
0gs <1 1» Y225 o ‘1Y% 0s

from a zero—stage war is identically zero, the maximum always
occurs when 8; = O 80 that rl(ql’qe) is merely ql-(]—BQ)QQ'
This corresponds to the fact that during the last satage of a
war Blue's alirpower will be directed entirely againét Red's
ground forces.

The calculation of £, with fN—l now known is not quite so

N
trivial However, due to the recurrence relation, this calcula-
tion actually defines the remainder of the program. Suppose we

wish to evaluate f (Ql,Q2), where (Ql'Qe) i1s some (1 A ql,JAqe).
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For a particular s, = 5, we evaluate (Q1 + Ol(Ql’Q2'82)’
Q + GQ(QI,QQ,Sl)). This determines a point X in the q,,q,
plane. Now X falls within a rectangle of dimensions Aq1 by qu,
where rN_l 18 known at the four corners, and fN_l‘«) 18 found by
linear interpolation. By adding (l—Sl)Q1 - (I-SQ)QQ, we determine
rN(Ql'QQ) for g, = 5;. We need only to repeat this process
where 8, takes on values between O and 1 to determine the maximum.
Since for the majority of a process 8, = Oorl, it {s expedient
first to test for an endpoint maximum before searching the in—
terior region. Since fR for each R, R=1,2,...,N, 18 evaluated
over a grid of (m+1)2 points, 1t 1&g escential to optimize the
search process. Consequently tne technique described in (4] was
adopted.

Once the function has been evaluated for a fixed K, R+l
replaces R-1, the newly calculated table rR replaces rﬁ+l in nigh—
speed storage, and the calculation of rR+1 begina.

Since 8y the Blue strategy which maximizes f, 13 generally
of more interest than the reesulting payoff, f, a table of g,
asscclated with each fR 1s stored and punched out prior to the
computaticn of fR+1.

When R reachee N, aszumed length of the conflict, the fol-
lowing information has been obtained:

1) The return attainable by Blue In an N-stage war, where
Blue enters the conflict with q planes, Ked with Py Red useeg

tne fixed allocation between air and ground support s., and Blue

2
uses an optimal allocation. This by definition 1s rN(ql,qe).
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2) Blue optimal strategy during the first stage of the
N—-stage war. This 1s the 8, which maximizes rN.
3) Blue optimal strategy during the first stage of a war
of duration R, R=1,2,...,N-1, for any initial forces qQ, and Q-
These tables are punched during the stage—by-stage calculation.
The process determining explicitly an optimal policy is
essentially that described above, but in reverse. Knowing R,
the stage, and (ql,qz), we refer to the table of s,'s to deter—
mine the strategy associated with (ql,qz). Employing this strategy

)Bt

we find ourselves at the (R+l stage and Blue possesses q1+01

planes against Red's q,+0,. Furthermore, evaluation of (l-sl)q1
+ (l—se)q2 produces the payoff during the (R)th time interval.
By referring to the tables of optimal strategies for the (R+1)at
stage and initial forces ql+G1 and q2+02, we determine the optimal
allocation for the (R+1)et period. The process 1is one of re—
peatedly determining the initial strategy in wars of decreasing
length and decreasing forces. The sequence defines Blue's
optimal policy.

At this time, only the most essential computational varia-
tions have been investigated. For example, it was found that
due to the near-linear behavior of rR over the range O to 10000,

A, = qu = 500 gave sufficiently accurate results to juatlry

1
its use. This same property led to the choice of linear in-
terpolation throughout the grid. Two versions of the Fibonaccian
search method of S. Johnson (4] were considered, one using pre—

determined points of evaluation, the other calculating the points.



The latter, of course, is more general, but the advantages
offered by less calculation and faster ocenvergence led to the
choice of the former. Printout of all functions and strategy
values along the grid was made optional. Considerable time was
saved by suppression of printing when 8, equaled O, a frequent

occurrence during the initial phases of a caleulation.

8. GRAPHS

Results are shown on the following pages. Figure 1 ghows
the changing relative strengths of the rival air forces when Blue
employs an optimal policy. Due to Blue's initial counter-air
tactics, Red's force i1s reduced during the early stages, while
Blue's force drops suddenly in the later stages when counter—ground
strategy is used. Pigure 2 shows that Blue's initial allocation
of planes is against the Red air force if the total number of planes
in each force is fairly even. If Blue has a marked numerical
superiority or inferiority, a counter—ground strategy should be
employed. Figure 3 depicts Blue's strategy where initial forces
are equal. The next three graphs show Blue's strategy as it changes
with time for all initial conditions. Pigure 7 shows the excess
sorties flown by Blue as a result of employing an optimal, rather
than constant, strategy. The use of an optimal poligy in thiese
particular example is shown to be equivalent to about 800 planes;
i.e., with the given parameter values Blue can start with 800 fewer
planes and still fly as many sorties as Red during a l15-stage
conflict.

Throughout these numerical examples, we have fixed both sides

replacement ratss, r; and r,, &8 100 planes per stage, non-eombat
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attrition rates, a, as .1, and kill probabilities, b, as .2.

Figure 8 shows the flow diagram used for computation.

This structure of the maximizing strategy is typical of a o
large class of problems. The reason for it lies in the oconcavity
of the function appearing in (5.6) as a function of 8;- This
concavity in turn i- based upon the linearity of the pay-off
function, and the concavity of the attrition function. Two
conclusions can be drawn from this. In the r%rut place, it shows
that great mathematical simplifications ensue when we introduce
concave functions, or convex functions if we are minimizing. Thus,
if we have functions which for one reason or another are not
concave, it may be well initially to use concave approximations
to these functions. On the other hand, these results show the
dangers inherent in mathematical models. In the real world, such
concentration on counter—air or counter-surface at various phases
of the campaign is dubious. Catastrophic loss by ground forces
might occur before the time T of the campaign has elapsed. S8Suech
effects are not measured by the "uniform”" pay-off function J.

There are, of course, dangers in conclusions based upon this
one—sided approach in which we fix Red's strategy. Iteration
procedures may be considered in which we alternately fix one side's
policy and then the other's. These must be used with care, since
we know from much simpler games that unless some feedback from

stage to stage is used, the results will not converge.

e Y ey
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